Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Procedia CIRP ; 116: 420-425, 2023.
Article in English | MEDLINE | ID: covidwho-2298437

ABSTRACT

In the present global health emergency, face masks, gowns, caps, gloves play a key role in limiting the diffusion of the COVID-19 pandemic, by acting as physical barriers to avoid droplets and filtrate exhalations coming from infected subjects. Since the most widespread devices are disposable products made of plastic or rubber materials, this means that relevant quantities of fossil resources are consumed, and huge amounts of wastes are generated. Currently the end of life of personal protective equipment (PPE) represents a problem in environmental, economic, and social terms. The market considers two possible disposal scenarios: incineration with energy recovery or landfill. In both cases, significant impacts are achieved both on the environment and on human health. This study aims to propose and validate a new scenario for PPE based on material reuse for bituminous conglomerates. The Life Cycle Assessment methodology and the experimental tests has been used to assess the environmental impacts in terms of both ReCiPe midpoints and endpoints and for demonstrate the technical feasibility of this new scenario. From an environmental point of view, relevant benefits were observed in comparison with the standard incineration for energy recovery or disposal in landfill.

2.
J Control Release ; 355: 292-311, 2023 03.
Article in English | MEDLINE | ID: covidwho-2230160

ABSTRACT

A Dry Powder Inhaler (DPI) is a technique as well as a device used to inhale formulation which is in the form of dry powder, and is inhaled through the nose or mouth. It was developed for the purpose of treating conditions like chronic obstructive pulmonary disease (COPD), Asthma, and even cystic fibrosis etc. The aim of the review is to discuss the different methods of preparation of dry powders along with the characterization of DPI. Here we present the outline of different methods like supercritical fluid extraction (SCF), spray drying, and milling. The review focussed on various devices including single and multi-dose devices used in the DPI. It also highlights on recent advances in the DPI including nano particulate system, siRNA-based medication, liposomes, and pro-liposomes based delivery. In COVID-19 silver nanoparticles-based DPIs provide very prominent results in the infected lungs. Moreover, this review states that the AI-based DPI development provides and improvement in the bioavailability and effectiveness of the drug along with the role of artificial neural networks (ANN). The study also showed that nasally administered drugs (nose to brain) can easily cross the blood-brain barrier (BBB) and enter the central nervous system (CNS) through the olfactory and trigeminal pathway which provides effective CNS concentrations at lower dosage. It is suggested that DPIs not only target respiratory complications but also treat CNS complications too. This review provides support and guides the researcher in the recent development and evaluation of DPI.


Subject(s)
COVID-19 , Metal Nanoparticles , Humans , Dry Powder Inhalers , Liposomes , Silver , Administration, Inhalation , Powders
3.
Adv Drug Deliv Rev ; 189: 114527, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2060293

ABSTRACT

Lactose is the most commonly used excipient in carrier-based dry powder inhalation (DPI) formulations. Numerous inhalation therapies have been developed using lactose as a carrier material. Several theories have described the role of carriers in DPI formulations. Although these theories are valuable, each DPI formulation is unique and are not described by any single theory. For each new formulation, a specific development trajectory is required, and the versatility of lactose can be exploited to optimize each formulation. In this review, recent developments in lactose-based DPI formulations are discussed. The effects of varying the material properties of lactose carrier particles, such as particle size, shape, and morphology are reviewed. Owing to the complex interactions between the particles in a formulation, processing adhesive mixtures of lactose with the active ingredient is crucial. Therefore, blending and filling processes for DPI formulations are also reviewed. While the role of ternary agents, such as magnesium stearate, has increased, lactose remains the excipient of choice in carrier-based DPI formulations. Therefore, new developments in lactose-based DPI formulations are crucial in the optimization of inhalable medicine performance.


Subject(s)
Excipients , Lactose , Administration, Inhalation , Aerosols , Chemistry, Pharmaceutical , Drug Carriers , Dry Powder Inhalers , Humans , Particle Size , Powders
4.
Biomed Eng Adv ; 4: 100054, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2031157

ABSTRACT

With severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as an emergent human virus since December 2019, the world population is susceptible to coronavirus disease 2019 (COVID-19). SARS-CoV-2 has higher transmissibility than the previous coronaviruses, associated by the ribonucleic acid (RNA) virus nature with high mutation rate, caused SARS-CoV-2 variants to arise while circulating worldwide. Neutralizing antibodies are identified as immediate and direct-acting therapeutic against COVID-19. Single-domain antibodies (sdAbs), as small biomolecules with non-complex structure and intrinsic stability, can acquire antigen-binding capabilities comparable to conventional antibodies, which serve as an attractive neutralizing solution. SARS-CoV-2 spike protein attaches to human angiotensin-converting enzyme 2 (ACE2) receptor on lung epithelial cells to initiate viral infection, serves as potential therapeutic target. sdAbs have shown broad neutralization towards SARS-CoV-2 with various mutations, effectively stop and prevent infection while efficiently block mutational escape. In addition, sdAbs can be developed into multivalent antibodies or inhaled biotherapeutics against COVID-19.

5.
Gastro Hep Adv ; 1(3): 393-402, 2022.
Article in English | MEDLINE | ID: covidwho-1670508

ABSTRACT

BACKGROUND AND AIMS: Apolipoprotein A1 (A1) and haptoglobin (HP) serum levels are associated with the spread and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We have constructed and validated a multivariable risk calculator (A1HPV6) integrating A1, HP, alpha2-macroglobulin, and gamma glutamyl transferase to improve the performances of virological biomarkers. METHODS: In a prospective observational study of hospitalized patients with nonsevere SARS-CoV-2 infection, A1HPV6 was constructed in 127 patients and validated in 116. The specificity was assessed in 7482 controls representing the general population. The primary diagnostic endpoint was the area under the receiver operating characteristic curve in patients with positive SARS-CoV-2 PCR. The primary prognostic endpoint was the age-and sex-adjusted risk of A1HPV6 to predict patients with WHO-stage > 4 (W > 4) severity. We assessed the kinetics of the A1HPV6 components in a nonhuman primate model (NHP), from baseline to 7 days (D7) after SARS-CoV-2 infection. RESULTS: The area under the receiver operating characteristic curve for A1HPV6 was 0.99 (95% CI 0.97-0.99) in the validation subset, which was not significantly different from that in the construction subset, 0.99 (0.99-0.99; P = .80), like for sensitivity 92% (85-96) vs 94% (88-97; P = .29). A1HPV6 was associated with W > 4, with a significant odds ratio of 1.3 (1.1-1.5; 0.002). In NHP, A1 levels decreased (P < .01) at D2 and normalized at D4; HP levels increased at D2 and peaked at D4. In patients, A1 concentration was very low at D2 vs controls (P < .01) and increased at D14 (P < .01) but was still lower than controls; HP increased at D2 and remained elevated at D14. CONCLUSION: These results validate the diagnostic and prognostic performances of A1HPV6. Similar kinetics of apolipoprotein A1, HP, and alpha-2-macroglobulin were observed in the NHP model. ClinicalTrials.gov number, NCT01927133.

6.
JHEP Rep ; 3(4): 100296, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1293968

ABSTRACT

BACKGROUND & AIMS: Chronic hepatitis B is an incurable disease. Addressing the unmet medical need for therapies has been hampered by a lack of suitable cell culture models to investigate the HBV life cycle in a single experimental setup. We sought to develop a platform suitable to investigate all aspects of the entire HBV life cycle. METHODS: HepG2-NTCPsec+ cells were inoculated with HBV. Supernatants of infected cells were transferred to naïve cells. Inhibition of infection was determined in primary and secondary infected cells by high-content imaging of viral and cellular factors. Novel antivirals were triaged in cells infected with cell culture- or patient-derived HBV and in stably virus replicating cells. HBV internalisation and target-based receptor binding assays were conducted. RESULTS: We developed an HBV platform, screened 2,102 drugs and bioactives, and identified 3 early and 38 late novel HBV life cycle inhibitors using infectious HBV genotype D. Two early inhibitors, pranlukast (EC50 4.3 µM; 50% cytotoxic concentration [CC50] >50 µM) and cytochalasin D (EC50 0.07 µM; CC50 >50 µM), and 2 late inhibitors, fludarabine (EC50 0.1 µM; CC50 13.4 µM) and dexmedetomidine (EC50 6.2 µM; CC50 >50 µM), were further investigated. Pranlukast inhibited HBV preS1 binding, whereas cytochalasin D prevented the internalisation of HBV. Fludarabine inhibited the secretion of HBV progeny DNA, whereas dexmedetomidine interfered with the infectivity of HBV progeny. Patient-derived HBV genotype C was efficiently inhibited by fludarabine (EC50 0.08 µM) and dexmedetomidine (EC50 8.7 µM). CONCLUSIONS: The newly developed high-content assay is suitable to screen large-scale drug libraries, enables monitoring of the entire HBV life cycle, and discriminates between inhibition of early and late viral life cycle events. LAY SUMMARY: HBV infection is an incurable, chronic disease with few available treatments. Addressing this unmet medical need has been hampered by a lack of suitable cell culture models to study the entire viral life cycle in a single experimental setup. We developed an image-based approach suitable to screen large numbers of drugs, using a cell line that can be infected by HBV and produces large amounts of virus particles. By transferring viral supernatants from these infected cells to uninfected target cells, we could monitor the entire viral life cycle. We used this system to screen drug libraries and identified novel anti-HBV inhibitors that potently inhibit HBV in various phases of its life cycle. This assay will be an important new tool to study the HBV life cycle and accelerate the development of novel therapeutic strategies.

SELECTION OF CITATIONS
SEARCH DETAIL